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ABSTRACT 
 
In interlaboratory comparisons, laboratories sometimes use a transfer instrument to realize the value of a 
laboratory standard to compare the relative biases of their measurement processes and standards. One summary 
of interest from such comparisons is the pairwise difference between two laboratories’ results, along with its 
expanded uncertainty, a confidence interval for the true difference. Since the labs have unequal variances, the 
confidence interval is usually computed by the Welch-Satterthwaite (denoted WS) procedure, which 
approximates the distribution of the pivot quantity used to compute the confidence interval by a Student’s-t 
distribution with effective degrees of freedom defined as a function of the data.  
 
In the course of analyzing the data from a comparison of temperature realizations, an awkward and 
counterintuitive property of the WS procedure was observed. Namely, a confidence interval for a between-lab 
difference can be narrower than the corresponding interval for one of the component results. This occurs when at 
least one laboratory’s uncertainty estimate has low degrees of freedom (say 1 or 2), and therefore has a large 
coverage factor from the Student’s-t distribution, while the effective degrees of freedom for the combined 
uncertainty of the pairwise difference, obtained from the WS approximation, is larger. 
 
The typical reaction to this situation is to suspect the WS procedure of failing to achieve its nominal confidence 
level. However, this is not the correct explanation. In fact, situations exist where the confidence intervals for 
each laboratory’s mean and for their pairwise difference all achieve the stated level of confidence even though 
the uncertainty of the difference is smaller than the uncertainty of at least one of its component results. This 
paper explains how this counterintuitive property of confidence intervals can be true. 
 
 
1. INTRODUCTION 
 
In interlaboratory comparisons, two or more laboratories sometimes use a transfer instrument to realize 
the value of a laboratory standard to compare the relative biases of their measurement processes and 
standards. One summary of interest from such comparisons is an estimate of the pairwise difference, 
T1-T2, between two laboratories' mean results, along with an expanded uncertainty for the estimated 
difference. To aid in its interpretation, the expanded uncertainty should capture the true unknown 
difference between the laboratories’ measurement results with a high probability, prespecified by the 
users of the comparison. Since the labs cannot reasonably be assumed to have the same levels of 
uncertainty in their measurement results, this confidence interval for the true difference between the 
laboratories’ results is usually computed using the Welch-Satterthwaite (denoted WS) procedure [1,2]. 
 
The WS procedure approximates the distribution of the pivot quantity, T,  
 
 T = [(T1-T2)-(m1-m2)]/(u1

2+u2
2)1/2 (1) 

 
used for computation of a confidence interval with a Student’s-t distribution with effective degrees of 
freedom, v1-2, defined as  
 
 v1-2 = [(u1

2+u2
2)2]/[(u1

4/v1)+ (u2
4/v2)] (2) 

 
where Ti is the observed mean measurement result for the ith laboratory, mi is its unknown, true mean 
temperature measurement result (as if obtained from an infinite number of replicate measurements), ui 



is the estimated combined standard uncertainty of Ti, and vi is the degrees of freedom for ui. Use of an 
approximation like the WS is necessary because no exact distributional theory currently exists for this 
type of statistic, a linear combination of normally-distributed quantities with unequal variances. 
 
Although it is only an approximation to the unknown distribution of T, the WS procedure is known to 
work well in many practical situations. Recently, however, in the course of analyzing data from a 
comparison of temperature realizations, an awkward and counterintuitive property of the WS 
procedure was observed. Namely, the confidence interval for a between-lab difference, m1-m2, can be 
narrower than one or both of the corresponding intervals for the component results, m1 or m2. 
 
For example, suppose one laboratory calibrated an SPRT at a particular fixed point using the mean of 
the results from two separate freezes. The SPRT is then sent to another laboratory, which calibrates the 
thermometer using four freezes. With the resulting uncertainty budgets shown in Table 1, below, the 
expanded uncertainty for the difference of the two laboratories will be less than the expanded 
uncertainty for the first laboratory’s calibration, at the 95% confidence level. 
 
Table 1: Uncertainties for two laboratories’ calibrations of a transfer SPRT at the Zn Point and the 
uncertainty of the difference between the laboratories’ temperature realizations. 
 
 Lab 1 Lab 2 Lab 1 - Lab 2 
Source/Type of Uncertainty u1i v1i u2i v2i u(1-2)i v(1-2)i 
Freeze-to-Freeze Repeatability (A) 0.579 1.000 0.393 3.000 0.700 1.993 
Hydrostatic Head (B) 0.003 ∞ 0.017 ∞ 0.017 ∞ 

Chemical Impurities (B) 0.121 ∞ 0.143 ∞ 0.187 ∞ 

Heat Flux - Immersion (B) 0.100 ∞ 0.100 ∞ 0.141 ∞ 

Nonlinearity of Bridge (B) 0.029 ∞ 0.081 ∞ 0.086 ∞ 

Stability of Reference Resistor (B) 0.005 ∞ 0.008 ∞ 0.009 ∞ 

Propagated TPW (B) 0.169 ∞ 0.130 ∞ 0.213 ∞ 

SPRT Self-Heating (B) 0.058 ∞ 0.031 ∞ 0.066 ∞ 

Pressure (B) 0.004 ∞ 0.043 ∞ 0.043 ∞ 

Plateau (B) 0.078 ∞ 0.060 ∞ 0.098 ∞ 

Combined Uncertainty (u1, u2, u1-2) 0.631 0.464 0.784 
Degrees of Freedom (v1, v2, v1-2) 1.415 5.820 3.132 
Coverage Factor (k1, k2, k1-2) 6.550 2.465 3.108 
Expanded Uncertainty (U1, U2, U1-2) 4.136 1.143 2.435 

 
This property of the WS approximation has also been noticed and reported on by Ballico [3] and Hall 
and Willink [4] recently, who discuss other examples of this phenomenon, some temperature-related.  
 
A typical, and not at all unreasonable, reaction to anecdotal examples of this phenomenon is to suspect 
the WS procedure of failing to achieve its nominally-specified confidence level. However, this is not 
the correct explanation. In fact, there are situations for which all of the confidence intervals involved 
in these examples achieve their stated confidence levels, yet the expanded uncertainties are ordered in 
contradiction to our expectations. This paper attempts to explain why this phenomenon occurs and 
how these counterintutitive results can be valid, using the example given in Table 1. 
 
 
2. A HYPOTHESIS FOR THE COUNTERINTUITIVE ORDERING OF UNCERTAINTIES 
 
The example presented in Table 1 gives some clues as to why this phenomenon occurs. The very low 



degrees of freedom for the estimate of freeze-to-freeze repeatability for Lab 1 are an unusual feature of 
this example, relative to the assumptions often made (implicitly or explicitly [1,2]) when thinking 
about the properties of uncertainty estimates. The fact that the repeatability is the largest uncertainty 
component means that the effective degrees of freedom of u1 are also low. Because of that, the 
coverage factor, k1, obtained from the Student’s-t distribution, used to compute U1 is very large. This 
yields a large expanded uncertainty for the calibration at Lab 1. In addition, the uncertainty for the 
calibration at Lab 2 is fairly similar in size to the uncertainty at Lab 1, though based on a larger 
number of measurements. Therefore, when the uncertainty of the difference in the temperature 
realizations is computed, its effective degrees of freedom are slightly higher than the effective degrees 
of freedom for the calibration at Lab 1. Because v1 and v1-2 are both low, however, the difference 
between their coverage factors is large, while the standard uncertainty for the difference, u1-2, is only 
slightly greater that u1. As a result, U1 and U1-2 end up having magnitudes ordered in reverse of our 
expectations. A key point, however, is that the problem seems to be caused by the coverage factors, k1 
and k1-2, rather than the standard uncertainties, u1 and u1-2, which are ordered as expected. 
 
The suggestion that the coverage factors are the immediate source of this problem indicates that the 
uncertainty in the uncertainty estimates u1, u2, and u1-2 are more important to this phenomenon, than 
the exact values of u1, u2, and u1-2 themselves. This is because the coverage factors obtained from 
Student’s-t distribution are a direct measure of the additional uncertainty over and above u1, u2, or u1-2 
required to compute valid confidence intervals because u1, u2, and u1-2 are estimates rather than being 
exactly known quantities. If the true values of the uncertainties associated with the estimates u1, u2, 
and u1-2 were available, then the values of k1, k2, and k1-2 would be obtained from the normal 
distribution, and would all be set to a value of 1.96 for a 95% confidence level. Instead, though, the 
values of the coverage factors range from roughly 2.5 to 6.6 to account for the variation inherent in u1, 
u2, and u1-2. The effective degrees of freedom for u1, u2, and u1-2, obtained directly from the WS 
formula, also tell us essentially the same thing that the coverage factors do, since there is a direct, one-
to-one correspondence between the two quantities for any given confidence level.  
 
Now, focusing on the uncertainty of u1 and u1-2, if some of the wildest variations in the estimates of u1 
could be balanced out by the associated estimates of u2, then it would follow that repeated realizations 
of u1-2 actually should be less variable than repeated realizations of u1. For example, sometimes when 
u1 takes on a value that is lower than its true value, u2 will take on a value higher its true value, 
allowing u1-2 to be closer to its true value more often then u1 is. This would justify the behavior of U1 
and U1-2, which summarize the total amounts of variation associated with the computation of 
confidence bounds. If u1-2 and u1 are similar in size, but u1-2 has a little less uncertainty than u1 does, 
then k1-2 should be less than k1 and, consequently, U1-2 can be less than U1 without indicating that the 
interval computed using the WS approximation has not attained its nominal confidence level. 
 
 
3. VALIDATION OF THE HYPOTHESIS 
 
Because the WS procedure is an approximation, mathematical proofs of hypotheses about its exact 
behavior are not likely to be easily obtained. Given that mathematical proof is not a very practical 
option, a good alternative for determination of its statistical properties is to directly observe the 
performance of the WS procedure under conditions where the true outcome of each result is known. 
Therefore simulation was used to test the hypothesis that U1-2<U1 does not imply failure of statistical 
intervals computed using the WS approximation because the uncertainty of u1-2 is less than the 
uncertainty of u1. Accordingly, 100,000 sets of data were simulated from each of the two measurement 
processes outlined in Table 1 using random number generation. The normally-distributed estimates of 
the process means, m1 and m2, were each set to be 692.677 K. The estimates of u1 and u2 were 
generated to have scaled Chi-Squared distributions with the degrees of freedom set to 1.45 and 3.98, 
respectively. The true value of u1 was set to 0.631 mK and the true value of u2 was set to 0.439 mK. 
 



Plots a1-a3 in the upper left of Figure 1 show the first 100 confidence intervals computed from the 
simulated data. The true values for each measurement process (offset by 692.677 K) and their true 
difference are denoted as solid horizontal lines. The plots show that most of the time the confidence 
intervals for each process cover their associated true parameter values. In fact, of the 100,000 intervals 
for m1, 94,907 covered their true values, just as they should for 95% confidence intervals. Similarly the 
observed coverage probability for the confidence intervals for m2 was 95.079%, also as expected. 
Finally, despite the fact that U1-2 was typically about 30% less than U1 in 85,607 of the 100,000 sets of 
data (see, for example, the results of simulation 100), the observed coverage of m1-m2 was 94.873%. 
The fact that the observed coverage probabilities for all three sets of intervals are consistent with their 
nominal confidence level of 95% establishes this example as a counter-example to the (incorrect) 
conclusion that U1-2<U1 implies that the WS intervals are not valid confidence intervals. By definition 
the only criterion that a confidence interval needs to meet in order to be a valid confidence interval is 
the criterion that it attains its stated coverage probability. 
 
In order to rest satisfied in the correctness of this counter-intuitive result, however, additional insight 
into its cause is helpful. Studying the individual simulation results in plots a1-a3 in Figure 1 sheds some 
light on the situation. A confidence interval may not capture its associated true value because all the 
measurements for that particular sample happened to be higher or lower than the true value by chance 
or because the measurements for a particular sample are closer together than they typically would be. 
For example, in simulation 40, the interval for m1 (692678.20 mK ± 0.48 mK) does not cover its true 
value (692677 mK) because the two measurements from that sample happened to both be high and to 
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Figure 1: Plots showing the first 100 confidence intervals for m1, m2, and m1-m2 (plots a1, a2, and a3) 
and histograms of all 100,000 values of u1, u2, and u1-2 (plots b, c, and d) obtained by simulation. 



be very close together. The interval for m2 (692676.46 mK ± 1.85 mK) does cover its true value, 
however, and also has a larger than typical estimate of u2. As a result, although the interval for m1-m2 
(692678.74 mK ± 1.84 mK) is centered relatively far away its true value, it covers its true value 
because the two uncertainty estimates balance out in the uncertainty estimate for the difference. This 
offers some insight into how the variation in uncertainty estimates might be reduced when individual 
uncertainty estimates are combined to estimate the uncertainty of the difference of two quantities. 
 
Plots b, c, and d in Figure 1 provide statistical evidence that the uncertainty of u1-2 is less than the 
uncertainty of u1, thereby explaining how U1-2 can be less than U1 for valid confidence intervals. Plots 
b, c, and d are histograms of u1, u2, and u1-2 respectively. These histograms show how the distributions 
of u1, u2, and u1-2 compare, in particular with respect to their uncertainties. The fact that the values of 
u1-2 are more tightly clustered around their typical value than the values of u1 are around theirs 
indicates that u1-2 is less variable than u1. Similarly, comparing the lower tails of the distributions of u1 
and u1-2 shows that u1 is much more likely to be underestimated than u1-2 is, while the upper tails of the 
two distributions are similar. Underestimation of u1-2 is less likely than underestimation of  u1 because 
u2, a component of u1-2, is estimated relatively precisely, bounding u1-2 below. This confirms the 
hypothesis that uncertainty in the uncertainty estimates accounts for the shortening of U1-2 relative to 
U1. In fact, the histograms also show that the typical value of u1-2 is slightly greater than the typical 
value of u1, as expected. However, the increase in u1-2 relative to u1 is outweighed by the decrease in 
the coverage factors, k1-2 relative to k1, which give the uncertainty in u1-2 and u1. 
 
Even though U1-2<U1 does not indicate a failure of the WS procedure to produce valid confidence 
intervals, that does not mean that the WS procedure always works perfectly.  Being an approximation, 
there are some conditions under which it works better than others.  Figure 2 shows additional results 
from simulations of the general scenario of Table 1 but with differing values of v1 (1 and 3), v2 (1 to 30 
in steps of 0.5), and different ratios of u2/u1 (0.1 to 1 in steps of about 0.015). Again, 100,000 data sets 
were generated for each set of simulation conditions. Plots a and b show contours of equal attained 
coverage probability and equal mean values of U1-2/U1, respectively, for v1=1. The fact that the 
attained coverage of intervals with a nominal confidence level of 95% drops as low as 88% for some 
conditions clearly shows that the WS procedure does not always work well. However, since the all of 
the contours of U1-2/U1 are less than one and 95% coverage is attained under some conditions, interval 
length cannot explain this failure of the WS procedure. Fortunately, plot c, for v1=3, suggests that the 
WS procedure will approximately attain its stated coverage as long as the degrees of freedom for the 
dominant uncertainty component are not extremely low. Plot d, also for v1=3, shows that under these 
conditions the lengths of the intervals will also be in much closer agreement with our expectations, 
though still not strictly ordered as intuition suggests they should be. 
 
 
4. CONCLUSIONS 
 
This paper illustrates a counterintuitive feature of confidence intervals computed by the WS procedure 
which is likely to be observed in interlaboratory comparisons when pairwise differences of results are 
used to compare measurement processes.  However, this example is a counter-example to the intuitive 
response that this phenomenon indicates that the WS approximation fails to produce valid confidence 
intervals. Confidence intervals for each lab’s true measurement process mean and their true difference 
all attain their stated confidence levels even though the lengths of the intervals are not ordered as 
intuitively expected. This phenomenon arises because confidence limits must account for the 
uncertainty in both the observed measurement values and in the uncertainty estimates themselves. 
Although relative interval length is not a indicator of confidence interval validity, this fact does not  
mean that the WS procedure is without flaws. Problems with interval coverage occur when uncertainty 
estimates being combined differ in magnitude and precision. 
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Figure 2: Contour plots showing the coverage probability attained for different values of v2 and u2/u1 
when v1=1 and v1=3 (plots a and c, respectively) and corresponding plots of U1-2/U1 (plots b and d, ). 
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